リチウムイオン電池の材料技術
0.リチウムイオン電池の材料技術・序章
リチウムイオン電池などの二次電池は携帯電話、スマートフォン、ノートパソコンなどのIT機器の電源として広く用いられており、更にこれからは電気自動車(EV)の電源、スマートグリッド用蓄電システムなどへの用途展開が見込まれています。
今後も非常に重要なデバイスであり、本稿ではリチウムイオン電池の概要、構成材料について述べ、次世代型リチウムイオン電池用材料、次世代型二次電池についても説明します。
1.リチウムイオン電池材料の概要
リチウムイオン電池の現在の構成は主に炭素系材料を負極活物質にし、リチウムイオン含有遷移金属酸化物を正極としています。その作動原理は、充電で正極材料LiCoO2などのリチウムイオン含有遷移金属酸化物正極材料からリチウムイオンが脱離し、負極材料カーボンにリチウムイオンが吸蔵され、この電気化学的反応で電子が正極から負極に流れ込むというものです。放電はこの逆反応となります。
これまでは主としてLiCoO2やLiMn2O4 などCo系、Mn系の正極材料が用いられてきました。近年 Li(Ni1/3Mn1/3Co1/3)O2などの三元系新規正極材料も用いられるようになってきています。いずれもリチウムイオン含有遷移金属酸化物です。
また近年はオリビン系リン酸鉄リチウム(LiFePO4)のような非酸化物系の正極材料も開発され一部で実用化されています。負極材料は大半が黒鉛材料(グラファイト)ですが、一部では低結晶性のハードカーボンも用いられています。
電解液は環状炭酸エステルと鎖状炭酸エステルの混合溶媒にLiPF6やLiBF4などの電解質塩を溶解させたものが用いられています。リチウムイオン電池で高分子材料が用いられているのがセパレーターとバインダーです。
また電解質の一部としても高分子材料が用いられています。AnodeとIntercalation cathodeとconversion cathodeの物性を図1に表します。理論電圧、容量、エネルギー密度をわかりやすく示しています。またこれらの情報により、電解液、添加剤集電体の選択をどれにすれば良いかも予想しやすくなります。
2.リチウムイオン電池の正極
2-1.インターカレーション型正極材料
インターカレーション型正極は固体のホストネットワークを持っており外部イオンを取り込める正極材料です。リチウムイオン電池においてはLi+が外部イオンであり、カルコゲナイド、遷移金属酸化物、ポリアニオン化合物などがあります。これらの材料はいくつかの結晶構造に分類することができ、層状、スピネル、オリビン、Tavorite構造などがあります。
2-2.遷移金属酸化物
iCoO2(LCO)は初めて商業的に導入された材料で層状遷移金属酸化物正極材料です。CoとLiが八面体サイトを占有しており、六角晶系を形成しています。理論容量は274 mAh g-1で、自己放電も少なく、放電電圧が高く、サイクル特性も良好で魅力的な材料です。
しかしながら高コストで熱安定性が低いことが問題です。LiNiO2 (LNO) も同じ結晶構造を有しており、理論容量は275 mAh g-1です。LCOより安価になることが研究開発の魅力ですが、合成時や脱リチウム時にNi2+イオンがLi+部位を置換して、リチウム拡散を阻害することが問題点として挙げられます。
またNi3+はCo3+より還元されやすく、熱安定性が低いことも問題です。MgやAlをドーピングすることにより熱安定性や電気化学的特性を向上させることができます。結果として、LiNi0.8Co0.15Al0.05O2(NCA)が良好な正極材料として開発されました。実用的にも約200 mAh g-1の容量を示しています。
しかしながら高温での容量低下が問題視されています。LiMnO2(LMO)もMnがCoやNiと比較して、安価であり毒性も低いので有力な材料として注目されています。しかしながら、Liイオンの脱挿入により層状構造がスピネル構造に変化したり、充放電中にMnが結晶中から失われサイクル特性が悪いことなどが問題となっています。
Li(Ni0.5Mn0.5)O2(NMO)正極材料もLCOのコストを低下させる材料の候補として研究開発されました。欠陥構造の少ないNMOを合成して約180 mAh g-1という高い容量も確認しています。このNMOにCoを加えると構造がさらに安定することが明らかとなりました。
LiNixCoyMnzO2(NCMもしくはNMC)は容量も同程度か、むしろ大きくでき放電電圧もLCOのそれと同程度です。それでいてLCOより安価にできます。典型的なNMC材料はLiNi0.33Co0.33Mn0.33O2(NMC111)であり、実用化されています。量量も234 mAh g-1と高いものとなっています(図2)。
Li2MnO3で安定化させたLiMO2 (M = Mn, Ni, Co)組成の正極材料も4.5-3.0 Vという高電圧での充放電条件において200 mAh g-1以上の容量を示すとして期待されています。4.5V以上の電圧においてLi2MnO3が活性化されLi2Oを放出します。これにより1回目のサイクルにおいて余分のLi+を提供できることになります。
残ったLi2MnO3もLiの拡散を促進し、またLiの貯蔵としても機能します。この材料はリチウム過剰層状型正極と呼ばれています。LiNi0.8Co0.1Mn0.1O2は高ニッケル正極材料と言われており、表面にあるMn4+がNiと電解液の反応によるガス発生を抑制することにより、安定な高ニッケル正極材料が存在できるとしています。
スピネル型であるLi2Mn2O4(LMO)も安価で豊富なマンガンを用いる利点が注目されている材料です。立方最密充填構造の酸素アニオン中の、Liが四面体の8aサイトを占有しており、Mnは八面体の16aサイトを占有している。LI+は四面体と八面体の空の格子間サイトを拡散していきます。
2-3.ポリアニオン化合物型正極
(XO4)3- (X = S, P, Si, As, Mo, W)などのポリアニオン化合物型正極もあります。代表的なこの型の正極材料としてはLiFePO4(LFP)があり、その熱安定性と容量の高さが注目されています。Li+とFe2+が八面体サイトを占有しており、Pが四面体サイトを占有しています。
ただ放電電圧と電子伝導性、イオン電導性の低さが弱点でもあります。粒子サイズを小さくしたり、炭素コーティング、カチオンドーピングなどの手法によりこれらの弱点を改良する試みも多数あります。
オリビンではないallauditeのLFPも報告されています。他のオリビン構造材料としてLiMnPO4(LMP)があります。LFPと比較して電圧も0.4Vほど高いので、エネルギー密度も高くなっていますが、導電性が低いなどの問題点もあります。
LiCoPO4、LiNi0.5Co0.5PO4、LiMn0.33Fe0.33- Co0.33PO4 (LCP、NCP、MFCP)も提案されていますが、安定性とさらなるエネルギー密度の向上が求められています。Li3V2(PO4)3 (LVP)も4.0Vという比較的高い電圧と、197 mAh/gという高容量が認められています。
LiFeSO4F (LFSF)も151mAh/gという比較的高い容量が出る材料として開発されています。バナジウムを含むLiVPO4Fも高い電圧と容量を有する材料として注目されているが毒性が問題視されています。
2-4.コンバージョン型正極材料
コンバージョン型電極材料はリチウムの充放電時に、結晶構造の変化と化学結合の切断と再結合を伴う固体状態のレドックス反応を起こしています。コンバージョン電極の場合の完全に可逆的な電気化学反応は一般的に以下のようになります。
- Type A MXz + yLi ? M + zLi(y/z)X
- Type B yLi + X ? LiyX
Type Aには高い(2かそれ以上の価数の金属イオンからなる)金属ハライドを用いると、高い理論容量を有することができます。図3はFeF2の反応を示しています。Fイオンは高い移動性を持っており、FeF2から拡散してLiFを形成して、残った物質はFeとなります。
これによりLiF (Li(y/z)X中に金属微粒子が拡散することになります。Type Bの物質としてはS, Se,Te、Iがあります。このうちでもS(硫黄)がその理論容量の大きさ(1675mAh/g)、コストの安さ、また資源の多さから最も良く研究されています。
酸素もType Bの正極となりえますが(例えばリチウム空気電池)、酸素は気体なので、別に電池の構造上の難しさがあります。他にもBiF3、CuF3、LiS、Seも正極材料として検討が進んでいます。
2-5.フッ素化合物と塩素化合物
金属フッ化物と金属塩化物は高い理論容量、体積容量から研究が活発に行われています。しかしながら、導電性の低さ、大きなヒステリシス、体積変化、副反応の影響が大きい、活物質が溶解するなどの欠点もあります。
FeF3やFeF2などの金属フッ化物は、その金属とハロゲンの高いイオン性の物性による大きなバンドギャップが原因となる導電性が低いことが特に問題です。しかしながら、それらの大きな開放的な構造が高いイオン導電性も生じさせています。
金属塩化物も類似の理由で導電性が低いです。またBIF3やFeF2は環状カーボネートを高い電圧下で分解してしまうことも問題となっています。またほとんどのイオン化合物は極性溶媒に溶解しやすい。これはフッ化物でも塩化物でも例外ではありません。低い導電性を補うために他の正極材料と同様に炭素系の導電助剤を用いたりします。
2-6.硫黄、硫化リチウムなどのカルコゲナイド系材料
硫黄は1675mAh/gという非常に高い理論容量を有しており、かつ安価で豊富な資源ということで正極材料として非常に注目されています。しかしながら電圧や導電性が低いこと、多硫化物などの中間体の有機溶剤系電解液への溶解などが問題となっています。
また充放電に伴う体積変化も問題視されており、他の正極と同様に炭素系材料との複合化などが検討されています。体積変化や乾燥時の硫黄の蒸発を抑制するためにより安全なリチウム金属電極以外を用いる検討が行われており、Li2SやLi2S複合体なども検討されています。
中間物の多硫化物の溶解を抑制するための電解液の調整も検討されています。LiNO3やP2S5を添加物として用いるとリチウム金属上に良好なSEIを形成して多硫化物の生成などを抑制することがわかっています。
固体電解質も多硫化物の溶解の抑制、リチウムのデンドライトの成長抑制の意味からも検討されています。セレンやテルルもその理論容量の高さから注目されている材料であるが、毒性があることやそのコストの高さから実用化は難しいとされています。一方でヨウ素は取り扱いがセレンやテルルより容易で、注目されている材料です。
3.リチウムイオン電池の負極
リチウム電池においてリチウム金属を負極として用いるとデンドライトを生じ回路を短絡させ引火することになるので、負極の開発は重要です。
3-1.炭素系材料
20年以上前にこの炭素系材料のおかげでリチウムイオン電池は商業化されました。炭素中のグラフェン面へのリチウムのインターカレーションにより二次元的な強度、導電性、そして良好なリチウムイオンの輸送性を保っています。
6つの炭素原子(C)に対して1つのLi原子が入ることができ、充放電に伴う体積変化もなく、導電性、リチウム拡散性も高い材料です。商業的な炭素材料は大きく2つに分けることができます。グラファイト状炭素は大きなグラファイト粒子を持ち理論容量に近い容量を有していますが、電解液中のプロピレンカーボネートとの組み合わせが悪く容量が低下しやすいです。
これにおいてアモルファス炭素などをコートすることでサイクル特性の劣化を抑制するような検討もあります。一方、ハードカーボンは小さいグラファイト粒子と無秩序な構造を有しており、炭素面の剥がれ(Exfoliation)も抑制されやすいです。
小さい小孔が存在しており、これのおかげで体積変化も少なく良好な材料となっています。しかしながら、表面に露出した端面の面積が多いのでSEIが形成されやすく1度目のサイクル後のクーロン効率が低下することが問題視されています。
3-2.チタン酸リチウム (Li4Ti5O12/LTO)
LTOのコストは炭素系材料と比較して電圧も低くコストも比較的高めで理論容量も低いですが、熱安定性が高く、サイクル特性が良いなどの理由から商業科が進んだ材料です。高電流に対する安定性は、充放電に伴うLTOの相の体積変化が0.2%以内という物性のおかげです。LTOは電解液と反応してガスを放出するという弱点もありますが、何千回以上も安定なサイクル特性を示すという特徴は非常に優れた点です。
3-3.コンバージョン電極
ここでの合金材料というのはリチウムとの合金のことです。合金材料において理論容量は非常に大きくなり得ますが、充電時の体積膨張が数倍にもなってしまうという欠点もあり、概してサイクル特性が悪く電極が劣化してしまう傾向が強いです。
よって他の電極材料と同様に炭素系材料との複合化が検討される場合が多いです。特に炭素系材料の中に上手く包埋できれば体積膨張できる十分なスペースなどを確保でき、またSEIを安定させるような効果も期待できるため、検討が続けられています。
非常に高い理論容量を有し、毒性が無く資源的にも豊富で安価になりえることからシリコン金属が最も良く研究開発されています。スズ(Sn)も注目されている材料ですが、小さい微粒子にしても脆いという弱点があります。ゲルマニウム(Ge)も、室温で液体となり、またスズと比較して脆くもない材料ですが、コスト面が問題視されています。
コストの面からはZn, Cd,Pbが望ましい材料ですが、理論容量がシリコンほど大きくないのと、脆いという欠点があります。またリン(P)やアンチモン(Sb)なども注目されましたが、毒性、可燃性があるなどの問題で研究開発があまり活発には進んでいません。
以上、電極材料の説明をさせて頂きました。他にもセパレーター、電解質、固体電解質も非常に重要なリチウムイオン電池の構成材料として挙げられます。
4.GSアライアンス株式会社でのリチウムイオン電池用材料や次世代型二次電池への取り組み
以上、リチウムイオン電池やEV用二次電池の概要を述べさせていただきましたが、以下に弊社でのリチウムイオン電池用材料や次世代型二次電池への取り組みを説明させて頂きます。詳細は同サイトに簡易的カタログとして掲載しているので、参照して頂くと幸いです。またさらなる詳細な質問等は当社に連絡頂ければ随時対応させていただきます。
4-1.金属有機構造体 (MOF : Metal Organic Framework)由来負極
弊社では金属有機構造体(MOF:Metal Organic Framework)という超多孔性材料を研究開発、製造販売しています。そこでこのMOFを原料とした電池用電極材料の研究開発も行っています。
MOFは金属カチオンとそれを架橋する多座配位子によって構成される物質で、その特性は細孔空間の形状、大きさ、および化学的環境により自在に変わります。ナノメートル単位で厳密に構造が制御できます。また金属イオンと有機リガンドの組み合わせは非常に多いので、既に数万種類以上のMOFが報告されています。
下記は弊社で合成したMOF を原料として作った電極材料を基に作成したリチウムイオン電池の電気化学的特性です。530 - 550 mAh/g弊社では初期的に示します。充放電50回のサイクル後も約85%以上の電池容量が維持されていることも確認しています。
MOFを自社で合成しているので、今後さらに異なるMOFの種類、電極の作成方法の最適化などを行っていき、より電池容量が大きく、サイクル特性の優れるMOFベースのリチウムイオン電池用材料を作ることを追求していきます。
4-3.イオン液体、イオン液体系リチウムイオン電池用電解液
<4-3-1.イオン液体の特徴>
- 広い温度範囲で液体であるので、高温及び低温領域での使用が可能です
- 電気が流れる導電性液体なので、電気化学デバイスや帯電防止用途での使用が可能です
- 熱的、化学的、電気化学的に安定なので、過酷な条件での用途展開が期待されます
- 蒸気圧が低く蒸発しにくいので真空下での使用も可能となります
- 難燃性材料なので非常に安全性が高いです
- セルロースなどの難溶性物質も溶解するので、様々な用途が期待できます
<4-3-2.化学組成>
イオン液体は、イミダゾリウムイオン、ピリジニウムイオンなどの有機カチオンと臭化物、フッ化物、塩化物などのアニオンから成る塩で、比較的低温で液体状態となります。種々あるイオン性液体のうち、よく使用されるカチオンは、1-エチル-3-メチルイミダゾリウム(EMI)と1-ブチル-3-メチルイミダゾリウム(BMI)などです。
一方、アニオンは、ヘキサフルオロホスフェート(PF6-)、テトラフルオロボレート(BF4-)、トリクレートトリフルオロメタンスルホン酸(CF3SO3-)、ビストリフルオロメトロスルホン酸イミド(CF3SO2)2N-などがあげられます。
<4-3-3.電解液>
電解質に要求される物性は高い電気伝導率、高い分解電圧、大きい電気二重層容量、広い使用温度範囲、安全性などですが、イオン液体はこの要求に対応できる可能性を持っており、電気二重層キャパシタ(EDLC)、リチウムイオン電池(LIB)、色素増感太陽電池(DSSC)、燃料電池などの各種電気化学デバイスへの応用が期待されています。
例えば、不揮発性、難燃性を生かした安全性の向上や、高導電性、高電位窓を生かした電池性能の改善など、現状の電解液が持つ様々な問題を解決できる可能性を秘めています。特に弊社ではアルミニウム空気電池やアルミニウムイオン電池を開発していて、リチウムイオン電池、及びそれらの二次電池用のイオン液体も合成しています。
例)
- Ethyl methyl imidazolium bis trifluoromethylsulfonyl imide
- Ethyl-3-methylimidazolium perfluorobutanesulfonate
- N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide
- Butyl 3-methyl imidazolium chloride
4-4.ガーネット型立方晶Li7La3Zr2O12(LLZO)とイオン液体系電解液を組み合わせた準全固体型リチウムイオン電池
リチウムイオン電池は可燃性があることからその安全性も重要な課題となっており、不燃性の電解質、全固体化などの研究開発が活発に進められています。
これらの観点から、上述した弊社で作っている酸化物ガーネット型リチウムイオン電池用のLi7La3Zr2O12(LLZO)型の酸化物の固体電解質と、不燃性の電解質であるイオン液体系の電解液の組み合わせを電解質として用い、正極材料にスピネル高電圧型である LiNi0.5Mn1.5O4正極材料, そして負極材料にLi5Ti4O12を用いて準全固体型リチウムイオン電池を作りました。
弊社では全てのこれらの電極、電解質材料を自社内で合成しています。現在の電池容量は正極材料に対して約 35mAh / gと低いものの(数十回の安定したサイクル特性は確認)、不燃性であり、高温でも使用可能であるなどの利点は安全性の観点からでも大きな利点です。今後さらなる電池容量の向上を目指していきます。
4-5.リチウムイオン電池用各種電極、電解質材料
他にも合成、製造販売している材料を表として示します。ただし理論容量以下、サイクル特性が良くないような材料も含まれております。電気化学特性の詳細は別カタログにあります。またはお問い合わせください。
4-6.リチウム過剰型正極
理論的容量が比較的高い正極材料で、現在弊社で合成しているリチウム過剰型正極材料は200mAh/g強の電池容量を有していますが、サイクル特性が悪く、今後も改良を継続していきます。
4-7.リチウム硫黄電池
上述したように理論的容量が非常に高い電池で、弊社でも検討しています。現在、硫黄正極に対して約340mAh/gの電池容量を有していますが、サイクル特性が悪く、今後も電池容量の向上も含めて改良を継続していきます。
4-8.SiO型負極系電池
理論的容量が比較的高い負極材料で、弊社でも他社製のSiOを用いてリチウムイオン電池を検討しております。約600mAh/g以上の高い電池容量を有していますが、サイクル特性が悪く、今後の改良が必要です。
4-9.アルミニウム空気電池
アルミニウム空気電池を研究開発しています。二次電池化の検討もしています。しかしながら基礎研究であり、二次電池化はまだまだ難しそうです。
4-10.アルミニウムイオン電池
アルミニウムイオン電池の研究開発も行っています。正極材料に対して約50mAh/gの電池容量を有しており、サイクル特性も約40 - 50回でも劣化は少なく安定しています。今後さらに電池容量を向上していく検討を続けます。